
PLATEAU
12th Annual Workshop at the
Intersection of PL and HCI

This work is licensed under a
“CC BY 4.0” license.
cb

Program Recognition in Synthesis
Michael B. James, Nadia Polikarpova

Abstract

Program synthesizers can offer a user many candidate snippets to fit a specification. How should a user decide
which snippet is the right one for them? We introduce the problem of program recognition in the context of
program synthesis. We argue recognition tasks are distinct from program comprehension, unique to synthesis,
and under-explored. We run an exploratory study on program recognition and share our findings.

1 Introduction
Program synthesizers are now fast enough to suggest several code snippets at once. Such synthesizers
now present a new problem to their users, they need to be able to recognize which snippet best matches
their specification, if there even is one. But how should synthesizers and their related tooling aid a
user in recognizing the snippet they actually want?

We call this setting program recognition. It is the general task of identifying a program matching
some specification. Programmers have likely previously encountered a recognition task when searching
Stackoverflow to determine if someone, somewhere on the internet has had the same problem and
also posted a solution. This task has become uniquely important to modern program synthesizers
whose selling points include being faster or safer than a human writing the snippet alone. To add to
their value, synthesizers need to consider this last-mile of synthesis so both inputting the intent and
choosing the right right snippet is easier than doing the programming task without the synthesizer. We
argue program recognition is distinct from program comprehension, uniquely important to synthesis,
and under-explored.

Program recognition in a synthesis context leaves many questions to answer. When do users reach
for documentation, examples, or another tool to select a snippet? When users do reach for examples
and how do they use or generate them? Do programmers compare against other snippets, and how?
How much do users try to actually understand their chosen snippet? Can we use existing tools from
program comprehension to aid in recognition?

Prior work has touched on principles of program recognition, but none have made it their prin-
ciple concern. The H+ tool for Haskell shows several snippets and each snippet has a handful of
differentiating examples [3]. Zhang et al. allow a user to request examples to test corner cases in
regular expression synthesis [9]. To our knowledge, prior work assumes that input-output examples
are the best way to choose a result from a synthesizer, but this assumption has not been empirically
validated, nor this design space explored.
Contributions. The gap in the program synthesis literature is a question unasked and unanswered:
how does a users choose the most appropriate code snippet from multiple synthesis results? In this
paper we present the following:
• We introduce the problem of program recognition in synthesis.
• We pose research questions in this topic.
• We perform an exploratory study, observing what techniques programmers deploy to choose a

snippet from a synthesizer.

2 Motivating Example
Kelly is a functional programmer trying to write a small function in Haskell. Her function mbIfTrue

should return an optional value from the input based on the boolean argument. If it is true, then
return should exist otherwise it should be the empty-value. The function should have the type
∀α.Bool → α → Maybe α. Kelly asks her IDE’s synthesizer to complete the snippet given the type
and it provides 5 possible results, as mocked-up in Figure 1. Kelly wants to quickly figure out if any of
the snippets accomplish her task or see that none do, to refine her specification (or write the function
herself). Current program synthesizers do not yet provide user support for this last-mile of program
synthesis: choosing the right snippet.

We envision a synthesizer augmented with tools to help a user like Kelly recognize the snippet
she needs. A synthesizer aware of common difficulties reading and choosing snippets might provide

1/5

https://creativecommons.org/licenses/by/4.0/deed.en

Figure 1. The description on this task was, “Function test takes two inputs, a boolean value b and an arbitrary
value x. It returns an optional value, which contains x if and only if b is True”. It included one test case, not
shown. Modern Haskell IDEs infer top level types and show them in light grey. Participants were asked to
select all appropriate snippets. Only snippet 4 matches this specification.

information modern IDEs already surface like documentation and type information. A recognition-
aware synthesizer might also show some generated input-output tests; these tests could show off
different and useful properties of the snippets. Such a tool could allow easy simultaneous execution
of the snippets to compare outputs. Some users might care about seeing intermediate values or
intermediate type applications and their tool should support them. Without better understanding the
process of recognition, we cannot meaningfully improve the snippet selection process in synthesizers.

3 Related Work
Program comprehension typically focuses on how a programmer understands an entire software sys-
tem or part of it [5]. Comprehension research has focused on how a programming paradigm affects
understanding [7]; how developers understand patches [8]; and more. Recognition differs from com-
prehension: in recognition, a programmer’s goal might not be complete understanding, but simply to
choose something that works well-enough—or to better understand their task.

Synthesizers that produce more than one result have vaguely pointed to this program recognition
problem. For example, H+, a type-directed synthesizer, can produce many snippets and examples
with each. The tool focused primarily about marrying types and/or examples as input, and secondarily
on example generation–without necessarily asking what kind of examples a user would want to see
[3]. Peleg and Polikarpova’s Bester synthesis engine provides multiple snippets and shows the user
which examples a given snippet successfully passes [6]. This engine helps bring the community closer
towards a tighter human-synthesizer interaction loop, but did not address how or why we might help
users recognize the snippet they want when it’s under their nose. Wrex presents a data scientist
readable Python that accomplishes a programming-by-example synthesis task [1]. Wrex provides
feedback, helping a user see if the synthesized code accomplishes their data-wrangling task; however,
it is limited to Flashfill-like domains [2]. In more the tightly controlled domain of regular expressions,
Zhang et al. help a user select a synthesized regular expression matching their intent [9]. A user can
request more examples of a preferred style to aid in recognition.

All prior works assume that examples are the most efficient way to help a user with a program
recognition task. To develop better synthesizers with a holistic approach to program recognition, we
must validate or broaden this assumption.

4 Study Design
To determine how users recognize the snippet that matches their intent we ran an exploratory lab
study. We recruited 4 participants to observe while they solved program recognition tasks. In this
think-aloud study, each participant was presented with a small function to complete using any of the
five program snippets provided to them. We wanted to get insight into what a user’s process is to
determine the best snippets for the given task.
Participants. We recruited participants with moderate experience with Haskell through a recent

James and Polikarpova | PLATEAU | v.12 | n.0 | e3 | 2021 2/5

Name Type
mbIfTrue Bool → a → Maybe a

firstJust a → [Maybe a] → Maybe a

inverseMap [a → b] → a → [b]

dedup (Eq a) => [a] → [a]

applyNTimes (a → a) → a → Int → a

Figure 2. The functions participants were asked to implement using snippets provided to them.

conference on functional programming and a recruitment form posted to Twitter. We recruited
graduate students from two different institutions (P2, P3, P4) and one professional (P1). Both P1
and P3 have 10 years of experience with Haskell, while P2 and P4 have 2 and 5 years of experience,
respectively.
Research Question. This need-finding study seeks to guide future work for synthesis tooling in
program recognition tasks and we had one primary question: What techniques do programmers
use to recognize the best snippet in a situation?

4.1 Setup
We provided each participant with a small Haskell repository so they could use their preferred tooling
on their own machine. Only P1 had tight Haskell integrations into their IDE while P2, P3, and P4
needed to rely on Hoogle 1 and their REPL for types and documentation. Participants were told they
could use any resource they like to determine which snippets worked best, including those on the web.

4.2 Tasks
Participants were given 5 tasks to complete. Each task contained a simple function to implement
using the program snippets provided. Each function had 5 possible snippets, with at least one correct
snippet per task. A task included an English-language description and one test case. The test case
was designed to be unhelpful, often accepting all or most snippets without modification. Participants
were told that there were zero or more possible solutions and they were asked to identify all snippets
matching the description.

The tasks stress different aspects of functional programming, especially in how users would have
to think about which snippets are appropriate (all shown in Figure 2). mbIfTrue requires reasoning
about monadic behavior, common in elegant Haskell code. firstJust relied on oft-unused parts
of the Data.Maybe module in the standard library, stressing how a user reasons through unfamiliar
components. inverseMap and applyNTimes forced a user to reason through higher-order code snippets.
dedup’s type is the least descriptive of the tasks: the function’s type gives little insight into how the
function must work unlike the others.

5 Observations
We observed our participants and gathered commonly used techniques.

5.1 Strategies
Each participant had a slightly different way of discovering the appropriate snippet for the task.
Although every participant used a process of elimination, either saying aloud that a snippet was bad,
commenting them out, or leaving a comment next to an eliminated candidate. P1, P2, and P3 each
used a multi-pass approach: after reading the specification, they went through the snippets in order
to reason through its type or its code. If a snippet was particularly challenging to understand, a
participant would make a guess, note it, and move on to the other snippets. On one such task,
P3 said, “don’t love this monadic stuff” before adding a comment “ew” to a highly polymorphic
snippet and moving on. Only after eliminating several snippets and presented with a choice would

1 A popular API search engine for Haskell. hoogle.haskell.org

James and Polikarpova | PLATEAU | v.12 | n.0 | e3 | 2021 3/5

these participants more deeply inspect the remainder. Each participant appeared to go through the
snippets a different number of times: P4 went through the snippets a single time per task, but in
great detail; while P1 would go through three times. The passes did not always cover the same things.
P1 looked closely at the snippet types, P3 looked at the provided test both to find snippets that
clearly wrong and can be eliminated.
Examples. Use of examples varied wildly. In task 4, P2 relied on only documentation to determine
the correct snippet. Only after they declared their choice did they run the provided test (which would
have accepted any snippet). Other participants used examples heavily, often in lieu of documentation.
For example, P3 in tasks 1, 4, and 5, would look at the documentation for a component, then run
that component with their own input. P3 described the documentation as being too long and that
running the component was easier for them. This participant built his understanding of subexpressions
by running them.

All participants appeared to have some transition point when a snippet became too complex to
think about symbolically or with types, and had to think using examples. Two participants at some
point just ran all snippets for a task through the same example, pointing to the general complexity
of the snippets (task 1 and task 3).

P1 and P2 tended to run a test on all snippets under consideration at the same time. In other tasks,
P1 and P3 kept only one example and slowly changed it as they eliminated snippet after snippet. The
particular values used in the examples were never of particular interest beyond being distinct (except
where duplication was part of the spec, in task 4).
Types. Haskell programming is synonymous type-directed programming but the types were a double-
edged sword. Task 4 operates on lists and uses a equality typeclass constraint yet no participant
considered the typeclass. On the other hand, P1, P3, and P4 were confused by the name of task 3,
inverseMap, but after considering its type, they each explained having an insight into how they would
expect the right snippet to work.

The highly polymorphic nature of Haskell comes with a mental cost. Every participant was
confused by a snippet using the identity function in place of function application in a higher order
function. Even an expert (P3) thought the snippet was ill-typed. Participants struggled to understand
how this snippet could typecheck. We believe that, like intermediate values, intermediate types and
type applications could help recognition tasks with higher-order functions.

P1’s use of types was exceptional. This participant looked at snippets and the specification to
determine if they were relevantly typed (i.e. each argument must be used at least once), and was able
to eliminate errant snippets in task 1. P1 was the only participant whose IDE presented all inferred
and un-annotated types, making it easier to use this extra information.
Fixing snippets. Participants were inclined to modify snippets in primarily two different ways. In
the first way, some participants wanted to de-sugar partially applied functions into eta-long form (P2,
P4). This behavior only came up in higher-order snippets. The second way was to fix an incorrect
snippet to fit the specification. P1, P3, and P4 all suggested fixes for snippets to make them correct,
yet none of them claimed they would have come up with the same snippet on their own.

5.2 Takeaways
All users in our study used some form of process of elimination, typically by marking some candidates
as out of consideration. Users would likely benefit from some way to maintain that state while reading
through synthesized snippets. We believe that even in a functional setting like in Haskell, examples
are still useful in program recognition. Our study confirms observations from Glassman’s work that
it’s easier for users to modify things than to invent new things [9], but in our case this applies both
to programs and to examples. Users seem to benefit from local information, for subexpressions, both
at the level of values and the level of types. Lastly, since several participants saw ways to change
snippets to fit the specification, synthesizers may wish to embrace this interaction mode. Such an
interaction model may allow a program synthesizer to act more as program exploration tool, which
will be especially useful in a neurally-guided setting where the synthesizer may not possess a semantic
understanding, but can nonetheless guide a user to solving their task.

James and Polikarpova | PLATEAU | v.12 | n.0 | e3 | 2021 4/5

References
[1] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani, “Wrex: A unifed programming-by-example

interaction for synthesizing readable code for data scientists,” p. 12, 2020.

[2] S. Gulwani, “Automating string processing in spreadsheets using input-output examples,” in Proceed-
ings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
ser. POPL 11, Association for Computing Machinery, Jan. 2011, pp. 317–330, isbn: 978-1-4503-0490-0.
doi: 10.1145/1926385.1926423. [Online]. Available: https://doi.org/10.1145/1926385.1926423.

[3] M. B. James, Z. Guo, Z. Wang, S. Doshi, H. Peleg, R. Jhala, and N. Polikarpova, “Digging for fold:
Synthesis-aided api discovery for haskell,” Proceedings of the ACM on Programming Languages, vol. 4,
no. OOPSLA, 205:1–205:27, Nov. 2020. doi: 10.1145/3428273.

[4] S. Lau, S. S. Srinivasa Ragavan, K. Milne, T. Barik, and A. Sarkar, “Tweakit: Supporting end-user
programmers who transmogrify code,” in Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems. Association for Computing Machinery, May 2021, pp. 1–12, isbn: 978-1-4503-
8096-6. [Online]. Available: https://doi.org/10.1145/3411764.3445265.

[5] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the comprehension of program comprehension,”
ACM Transactions on Software Engineering and Methodology, vol. 23, no. 4, 31:1–31:37, Sep. 2014,
issn: 1049-331X. doi: 10.1145/2622669.

[6] H. Peleg and N. Polikarpova, “Perfect is the enemy of good: Best-effort program synthesis,” p. 30, 2020.

[7] G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini, “On the positive effect of reactive pro-
gramming on software comprehension: An empirical study,” IEEE Transactions on Software Engineering,
vol. 43, no. 12, pp. 1125–1143, Dec. 2017, issn: 1939-3520. doi: 10.1109/TSE.2017.2655524.

[8] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software engineers understand code changes?
an exploratory study in industry,” in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, ser. FSE 12, Association for Computing Machinery, Nov.
2012, pp. 1–11, isbn: 978-1-4503-1614-9. doi: 10.1145/2393596.2393656. [Online]. Available: https:
//doi.org/10.1145/2393596.2393656.

[9] T. Zhang, L. Lowmanstone, X. Wang, and E. L. Glassman, “Interactive program synthesis by augmented
examples,” in Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technol-
ogy, ACM, Oct. 2020, pp. 627–648, isbn: 978-1-4503-7514-6. doi: 10.1145/3379337.3415900. [Online].
Available: https://dl.acm.org/doi/10.1145/3379337.3415900.

James and Polikarpova | PLATEAU | v.12 | n.0 | e3 | 2021 5/5

https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/3428273
https://doi.org/10.1145/3411764.3445265
https://doi.org/10.1145/2622669
https://doi.org/10.1109/TSE.2017.2655524
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/3379337.3415900
https://dl.acm.org/doi/10.1145/3379337.3415900

	Introduction
	Motivating Example
	Related Work
	Study Design
	Setup
	Tasks

	Observations
	Strategies
	Takeaways

