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But what if you need a composition of functions?
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Running Example
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dedup [1,2,1,1] = [1,2,1] 

Task: Remove adjacent duplicates

dedup xs = map head (group xs) 

= map head [[1,1], [2], [1]]

= [1,2,1]

dedup :: Eq a => [a] -> [a] 
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dedup xs = map head (group xs)

dedup “OOPSLA2020” = “OPSLA2020”
dedup [1,2,1,1] = [1,2,1]

Eq a => [a] -> [a]
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dedup xs = map head (group xs)

Challenge: How to infer likely type 
specifications from tests?

dedup “OOPSLA2020” = “OPSLA2020”
dedup [1,2,1,1] = [1,2,1]

Eq a => [a] -> [a]
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[1,2,1,1] -> [1,2,1]

Ranking types

[a] -> [a] a -> a

Eq a => [a] -> [a]

Ord a => [a] -> [a] Ord a => a -> a

Eq a => a -> a

“OOPSLA2020” -> “OPSLA2020”
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[1,2,1,1] -> [1,2,1]

Ranking types
[a] -> [a]

a -> a

Eq a => [a] -> [a]

Ord a => [a] -> [a]

Eq a => a -> a

1.

2.

3.

4.

5.

“OOPSLA2020” -> “OPSLA2020”



32

Types from Tests

1.

2.

3.

Generalized types
Filter types
Rank types

Challenge: How to infer likely type 
specifications from tests?



32

Types from Tests

1.

2.

3.

Generalized types
Filter types
Rank types

Challenge: How to infer likely type 
specifications from tests?



33

💡Type 
or 

Test

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Specification Filtering Comprehension

User Study



Filtering Programs

34

Eq a => [a] -> [a]



Filtering Programs

35

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> (head (group xs))

\xs -> (last (group xs))



Filtering Programs

36

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> (last (group xs))

\xs -> init (head (group xs))



Filtering Programs

37

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))



Filtering Programs

37

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))



Filtering Programs

37

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))



Filtering Programs

37

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))

Challenge: How to filter irrelevant programs?
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38

Test ALL the values!

Smallcheck†

∄x, y. (…)

Property

✅

❌💁
Does not hold

Holds (up to k)

†:[Runciman, Naylor, Lindblad. 2008]
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✅

❌
Does not hold

P1, P2

Smallcheck†

†:[Runciman, Naylor, Lindblad. 2008]

Holds (up to k)
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Without aid
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dedup :: Eq a => [a] -> [a]

1. \xs -> concat (group xs) 
2. \xs -> head (group xs) 
3. \xs -> last (group xs) 
4. \xs -> map head (group xs)

Type Query:

Results: How are they different?

Are any right?

What about edge cases?

Challenge: How to help 
users pick their program?
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User-Provided Example

Generated Examples

Documentation

Eq a => [a] -> [a]Type Query:
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How do Hoogle+ users specify their search intent?RQ 2

RQ 1



User Study

48

traditional methods

150 Haskellers

What are your

for code snippet searches?



User Study

48

traditional methods

150 Haskellers

What are your

for code snippet searches?

Hoogle



User Study

48

traditional methods

150 Haskellers

What are your

for code snippet searches?

Hoogle

Google



User Study

48

traditional methods

150 Haskellers

What are your

for code snippet searches?
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8
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What is a task?

dedup “OOPSLA20” = “OPSLA20”

Description:

Example:

dedup xs = ...
Function dedup takes ...
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Conclusion

67

- Hoogle+ empowers users to complete 
more API-search focused tasks, faster

- Infer likely types from tests

- Filter away irrelevant programs

- Autogenerated comprehension examples http://hplus.programming.systems
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Type inference eval 

1 Example

2 Examples

3 Examples

1st Choice

2nd Choice

3rd-10th Choice

No Answer

Expected 
1 type variable

Most benchmarks in this rank
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