
Digging for Fold: 
Synthesis-Aided API Discovery 

for Haskell 

Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, 
Ranjit Jhala, Nadia Polikarpova

1

OOPSLA 2021 / 2020



Programmers don’t want to repeat code themselves

2



Programmers don’t want to repeat code themselves

APIs reduce code repetition

3



API Discovery Problem



API Discovery Problem



API Discovery Problem



API Discovery Problem



Haskell makes this harder

8



Haskell makes this harder

9

≈



10



10



10

But what if you need a composition of functions?



Running Example

11

Task: Remove adjacent duplicates



Running Example

12

dedup [1,2,1,1] = [1,2,1] 

Task: Remove adjacent duplicates

dedup xs = map head (group xs) 



Running Example

13

dedup [1,2,1,1] = [1,2,1] 

Task: Remove adjacent duplicates

dedup xs = map head (group xs) 

= map head [[1,1], [2], [1]]

= [1,2,1]



Running Example

14

dedup [1,2,1,1] = [1,2,1] 

Task: Remove adjacent duplicates

dedup xs = map head (group xs) 

= map head [[1,1], [2], [1]]

= [1,2,1]

dedup :: Eq a => [a] -> [a] 



15



15



16

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Core Engine



16

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Core Engine

Type



16

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Core Engine

Type



16

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Core Engine

Type



16

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Core Engine

Type



17

Core Engine

Type 
or 

Test

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Specification



17

Core Engine

Type 
or 

Test

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Specification Filtering



18

💡Type 
or 

Test

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Specification Filtering Comprehension



18

💡Type 
or 

Test

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Specification Filtering Comprehension

User Study



Specification

19

?



Specification

19

?



Specification

20



Specification

21



Specifying dedup

22

dedup xs = map head (group xs)

Eq a => [a] -> [a]



Specifying dedup

22

dedup xs = map head (group xs)

dedup [1,2,1,1] = [1,2,1]

Eq a => [a] -> [a]



Specifying dedup

22

dedup xs = map head (group xs)

dedup “OOPSLA2020” = “OPSLA2020”
dedup [1,2,1,1] = [1,2,1]

Eq a => [a] -> [a]



Specifying dedup

23

dedup xs = map head (group xs)

Challenge: How to infer likely type 
specifications from tests?

dedup “OOPSLA2020” = “OPSLA2020”
dedup [1,2,1,1] = [1,2,1]

Eq a => [a] -> [a]



24

Challenge: How to infer 
likely type specifications 



24

Challenge: How to infer 
likely type specifications 



24

Challenge: How to infer 
likely type specifications 



24

Challenge: How to infer 
likely type specifications 



25

Challenge: How to infer 
likely type specifications 



25

Challenge: How to infer 
likely type specifications 



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]

[a] -> [a]



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]

a -> a

[a] -> [a]



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]

a

a -> a

[a] -> [a]



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]

a

a -> a

Ord a, Ord b => [b] -> [a]

[a] -> [a]



Searching for likely types

26

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]

a

a -> a

Ord a, Ord b => [b] -> [a]

[a] -> [a]

b -> a

… …



Searching for likely types

27

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]

[a] -> [a]

a

a -> a

Ord a, Ord b => [b] -> [a]

…

b -> a

…



Filtering for likely types

28

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]

[a] -> [a]

a

a -> a

Ord a, Ord b => [b] -> [a]

…

b -> a

…



Filtering for likely types

29

[1,2,1,1] -> [1,2,1] “OOPSLA2020” -> “OPSLA2020”

[Int] -> [Int] [Char] -> [Char]

Ord a => [a] -> [a]

Eq a => [a] -> [a]

[a] -> [a]

a

a -> a

Ord a, Ord b => [b] -> [a]

…

b -> a

…



30

[1,2,1,1] -> [1,2,1]

Ranking types

[a] -> [a] a -> a

Eq a => [a] -> [a]

Ord a => [a] -> [a] Ord a => a -> a

Eq a => a -> a

“OOPSLA2020” -> “OPSLA2020”



31

[1,2,1,1] -> [1,2,1]

Ranking types
[a] -> [a]

a -> a

Eq a => [a] -> [a]

Ord a => [a] -> [a]

Eq a => a -> a

1.

2.

3.

4.

5.

“OOPSLA2020” -> “OPSLA2020”



32

Types from Tests

1.

2.

3.

Generalized types
Filter types
Rank types

Challenge: How to infer likely type 
specifications from tests?



32

Types from Tests

1.

2.

3.

Generalized types
Filter types
Rank types

Challenge: How to infer likely type 
specifications from tests?



33

💡Type 
or 

Test

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Specification Filtering Comprehension

User Study



Filtering Programs

34

Eq a => [a] -> [a]



Filtering Programs

35

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> (head (group xs))

\xs -> (last (group xs))



Filtering Programs

36

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> (last (group xs))

\xs -> init (head (group xs))



Filtering Programs

37

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))



Filtering Programs

37

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))



Filtering Programs

37

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))



Filtering Programs

37

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))

Challenge: How to filter irrelevant programs?



Filtering Programs - Smallcheck

38

Test ALL the values!

Smallcheck†

†:[Runciman, Naylor, Lindblad. 2008]



Filtering Programs - Smallcheck

38

Test ALL the values!

Smallcheck†

∄x, y. (…)

Property

†:[Runciman, Naylor, Lindblad. 2008]



Filtering Programs - Smallcheck

38

Test ALL the values!

Smallcheck†

∄x, y. (…)

Property

✅
Holds (up to k)

†:[Runciman, Naylor, Lindblad. 2008]



Filtering Programs - Smallcheck

38

Test ALL the values!

Smallcheck†

∄x, y. (…)

Property

✅

❌💁
Does not hold

Holds (up to k)

†:[Runciman, Naylor, Lindblad. 2008]



Filtering Programs - Hoogle+

39

✅

❌
Does not hold

Smallcheck†

†:[Runciman, Naylor, Lindblad. 2008]

Holds (up to k)



Filtering Programs - Hoogle+

39

✅

❌
Does not hold

P1, P2

Smallcheck†

†:[Runciman, Naylor, Lindblad. 2008]

Holds (up to k)



Filtering Properties

40

P1. SOME input produces ANY output



Filtering Properties

40

P1. SOME input produces ANY output

\xs -> (head [])



Filtering Properties

40

P1. SOME input produces ANY output

\xs -> (head [])



Filtering Properties

40

P1. SOME input produces ANY output

P2. SOME input produces different outputs

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))



Filtering Properties

40

P1. SOME input produces ANY output

P2. SOME input produces different outputs

\xs -> (head [])

\xs -> init (head (group xs))

\xs -> tail (head (group xs))



Filtered Search

41

Challenge: How to filter 
irrelevant programs? Eq a => [a] -> [a]

\xs -> (head [])

\xs -> tail (head (group xs))

\xs -> init (head (group xs))



Filtered Search

41

Challenge: How to filter 
irrelevant programs?

1. Test to produce output

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> tail (head (group xs))

\xs -> init (head (group xs))



Filtered Search

41

Challenge: How to filter 
irrelevant programs?

1. Test to produce output

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> tail (head (group xs))

\xs -> init (head (group xs))



Filtered Search

41

Challenge: How to filter 
irrelevant programs?

1. Test to produce output

2. Test to distinguish

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> tail (head (group xs))

\xs -> init (head (group xs))



Filtered Search

41

Challenge: How to filter 
irrelevant programs?

1. Test to produce output

2. Test to distinguish

Eq a => [a] -> [a]

\xs -> (head [])

\xs -> tail (head (group xs))

\xs -> init (head (group xs))



42

💡Type 
or 

Test

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Specification Filtering Comprehension

User Study



Without aid

43

dedup :: Eq a => [a] -> [a]

1. \xs -> concat (group xs) 
2. \xs -> head (group xs) 
3. \xs -> last (group xs) 
4. \xs -> map head (group xs)

Type Query:

Results:

Challenge: How to help 
users pick their program?



Without aid

43

dedup :: Eq a => [a] -> [a]

1. \xs -> concat (group xs) 
2. \xs -> head (group xs) 
3. \xs -> last (group xs) 
4. \xs -> map head (group xs)

Type Query:

Results:

Are any right?

Challenge: How to help 
users pick their program?



Without aid

43

dedup :: Eq a => [a] -> [a]

1. \xs -> concat (group xs) 
2. \xs -> head (group xs) 
3. \xs -> last (group xs) 
4. \xs -> map head (group xs)

Type Query:

Results: How are they different?

Are any right?

Challenge: How to help 
users pick their program?



Without aid

43

dedup :: Eq a => [a] -> [a]

1. \xs -> concat (group xs) 
2. \xs -> head (group xs) 
3. \xs -> last (group xs) 
4. \xs -> map head (group xs)

Type Query:

Results: How are they different?

Are any right?

What about edge cases?

Challenge: How to help 
users pick their program?



Hoogle+’s UI

44

Eq a => [a] -> [a]Type Query:



Hoogle+’s UI

44

Eq a => [a] -> [a]Type Query:

User-Provided Example



Hoogle+’s UI

44

Eq a => [a] -> [a]Type Query:

User-Provided Example

Generated Examples



Hoogle+’s UI

44

Eq a => [a] -> [a]Type Query:

User-Provided Example

Generated Examples



Hoogle+’s UI

45

User-Provided Example

Generated Examples

Documentation

Eq a => [a] -> [a]Type Query:



46

💡Type 
or 

Test

Program Synthesis by 
Type-Guided Abstraction Refinement 

[Guo et al. 2020]

Specification Filtering Comprehension

User Study



User Study

47



Does our synthesizer help functional programmers 
solve their program search tasks, 
compared to traditional methods?

User Study

47

RQ 1



Does our synthesizer help functional programmers 
solve their program search tasks, 
compared to traditional methods?

User Study

47

How do Hoogle+ users specify their search intent?RQ 2

RQ 1



User Study

48

traditional methods

150 Haskellers

What are your

for code snippet searches?



User Study

48

traditional methods

150 Haskellers

What are your

for code snippet searches?

Hoogle



User Study

48

traditional methods

150 Haskellers

What are your

for code snippet searches?

Hoogle

Google



User Study

48

traditional methods

150 Haskellers

What are your

for code snippet searches?

Hoogle

Google

Stackoverflow



30 Participants
Expert (>= 7 years)

8

Intermediate (1-6 years)
10

Beginner (<1 year)
12

49



50

What is a task?



50

What is a task?

Description:

Function dedup takes ...



50

What is a task?

dedup “OOPSLA20” = “OPSLA20”

Description:

Example:

Function dedup takes ...



50

What is a task?

dedup “OOPSLA20” = “OPSLA20”

Description:

Example:

Function dedup takes ...



50

What is a task?

dedup “OOPSLA20” = “OPSLA20”

Description:

Example:

Function dedup takes ...



50

What is a task?

dedup “OOPSLA20” = “OPSLA20”

Description:

Example:

Function dedup takes ...



50

What is a task?

dedup “OOPSLA20” = “OPSLA20”

Description:

Example:

dedup xs = ...
Function dedup takes ...



Results

51

Time-to-completeCompletion Rate



Results

52

C
om

pl
et

ed
 ta

sk
s

0

15

30

45

60

Hoogle Hoogle+

00

Completion Rate



Results

53

C
om

pl
et

ed
 ta

sk
s

0

15

30

45

60

Hoogle Hoogle+

0

29

Completion Rate



Results

54

C
om

pl
et

ed
 ta

sk
s

0

15

30

45

60

Hoogle Hoogle+

44

29

Completion Rate



Results

54

C
om

pl
et

ed
 ta

sk
s

0

15

30

45

60

Hoogle Hoogle+

44

29

Completion Rate

51% 
more!



Results

55

Time-to-completeCompletion Rate

C
om

pl
et

ed
 ta

sk
s

0

15

30

45

60

Hoogle Hoogle+

44

29



Results

56

Time-to-completeCompletion Rate

C
om

pl
et

ed
 ta

sk
s

0

15

30

45

60

Hoogle Hoogle+

44

29

Av
er

ag
e 

ta
sk

 c
om

pl
et

io
n 

tim
e

0

2m

4m

6m

8m

Hoogle Hoogle+

3m 58s



Results

57

Time-to-completeCompletion Rate

C
om

pl
et

ed
 ta

sk
s

0

15

30

45

60

Hoogle Hoogle+

44

29

Av
er

ag
e 

ta
sk

 c
om

pl
et

io
n 

tim
e

0

2m

4m

6m

8m

Hoogle Hoogle+

3m 43s3m 58s



Results

58

Time-to-complete
Task A

Av
er

ag
e 

ta
sk

 c
om

pl
et

io
n 

tim
e

0

2m

4m

6m

8m

Hoogle Hoogle+

4m 14s

5m 46s



Results

58

Time-to-complete
Task A

Av
er

ag
e 

ta
sk

 c
om

pl
et

io
n 

tim
e

0

2m

4m

6m

8m

Hoogle Hoogle+

4m 14s

5m 46s 90 second 
improvement



Results

58

Time-to-complete
Task A

Av
er

ag
e 

ta
sk

 c
om

pl
et

io
n 

tim
e

0

2m

4m

6m

8m

Hoogle Hoogle+

4m 14s

5m 46s 90 second 
improvement

Input Types Output Types



Results

58

Time-to-complete
Task A

Av
er

ag
e 

ta
sk

 c
om

pl
et

io
n 

tim
e

0

2m

4m

6m

8m

Hoogle Hoogle+

4m 14s

5m 46s 90 second 
improvement

Input Types Output Types

Intermediate Type



How did users give their specification?

59



How did users give their specification?

59

Type Only



How did users give their specification?

59

Type Only Test + Type



How did users give their specification?

Test Included
81%

Type Only
19%

60



How did users give their specification?

Test Only
42%

Test Included
39%

Type Only
19%

61



Specification among novices

62



Specification among novices

Test Only
54%

Test Included
27%

Type Only
19%

63



Specification among novices

Test Only
54%

Test Included
27%

Type Only
19%

64



Specification among novices

Test Only
54%

Test Included
27%

Type Only
19%

65



Specification among novices

Test Only
54%

Test Included
27%

Type Only
19%

66



Conclusion

67

http://hplus.programming.systems



Conclusion

67

- Hoogle+ empowers users to complete 
more API-search focused tasks, faster

http://hplus.programming.systems



Conclusion

67

- Hoogle+ empowers users to complete 
more API-search focused tasks, faster

- Infer likely types from tests

http://hplus.programming.systems



Conclusion

67

- Hoogle+ empowers users to complete 
more API-search focused tasks, faster

- Infer likely types from tests

- Filter away irrelevant programs

http://hplus.programming.systems



Conclusion

67

- Hoogle+ empowers users to complete 
more API-search focused tasks, faster

- Infer likely types from tests

- Filter away irrelevant programs

- Autogenerated comprehension examples http://hplus.programming.systems



68

Mean

Types of searches by experience



Type inference eval 

1 Example

2 Examples

3 Examples

1st Choice

2nd Choice

3rd-10th Choice

No Answer

Expected 
1 type variable

Most benchmarks in this rank



70

Filtering Eval


