
Advisor: Nadia Polikarpova

Synthesis from Partial Refinements
Michael James (m3james@ucsd.edu)

[1] J. Frankle, P.-M. Osera, D. Walker, and S. Zdancewic, “Example-directed Synthesis: A Type-theoretic Interpretation,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
New York, NY, USA, 2016, pp. 802–815, doi: 10.1145/2837614.2837629.
[2] N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program Synthesis from Polymorphic Refinement Types,” p. 17.
[3]P.-M. Osera and S. Zdancewic, “Type-and-example-directed Program Synthesis,” in Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, New York, NY, USA, 2015, pp. 619–630,
doi: 10.1145/2737924.2738007.

Printed for POPL2020, Student Research Competition, in New Orleans, LA

whatʼs next?
Type Negation

Mixed Abstract / Concrete

Condition Abduction
from intersections

Synthesize outside of
trace-complete examples

filter ::
pred:(x:a → {Bool | pred x}) →
[a| pred ν] → {[a]|ν == xs} ∩
¬[a| pred ν] → [a| pred ν}

Only 2 partial specs!

Searching for an app

how, efficiently?

?? ??

Γ ⊢ ?? ?? ↓ τ ↑ τ′

ys

Round trip type checking²

filter pred

Top down then back up!
Gather subtype constraints

as Horn Clauses

var ??
match ??

ite ?? ?? ??

var ??
?? ??
ite ?? ?? ??

=
≠
=

1.
2.
3.

Attempt Terms for τ₁ Terms for τ₁

Rule selected must match per step

Split worlds per intersection

filter pred xs =
match xs of
Nil → ??
Cons y ys → (??)::τ₁∩τ₂

Worlds¹

partial refinements

filter pred xs =
match xs of
Nil → Nil
Cons y ys → if (pred y)
then (Cons y (filter pred ys))
else (filter pred ys)

filter :: pred:(x:a → {Bool|pred x}) →

Trace-complete example Polymorphic ExamplePredicate positive values

(xs: [a|pred ν] →

{[a]|ν==xs})
(xs: [a] → {[a|pred ν]})

[x:{a|¬pred ν},
y:{a| pred ν}] → {[a]|ν==y}∩ ∩

what is the problem?
filter :: (a → Bool) → [a] → [a]

refinements

Not expressive enough!

filter :: pred: (x:a → {Bool|pred x}) →
xs: [a] → {[a | pred ν]} xs: [a|pred ν] → {[a] | ν == xs]}

filter pred xs = Nil filter pred xs = xs

Verbose!

examples

filter isEven [] => []
[1] => []

[2,1] => [2]
[3,2,1] => [2]

[4,3,2,1] => [4,2]

filter isOdd [] => []
[1] => [1]

[2,1] => [1]
[3,2,1] => [3,1]

[4,3,2,1] => [3,1]

what is synthesis?
program
building
blocks reconstructTopLevel :: MonadHorn s => Goal -> Explorer s RProgram

reconstructTopLevel (Goal funName env (ForallT a sch) impl depth pos s) =
reconstructTopLevel (Goal funName (addTypeVar a env) sch impl depth pos s)

reconstructTopLevel (Goal funName env (ForallP sig sch) impl depth pos s) = $(todo "is this it?")
-- reconstructTopLevel

-- (Goal funName (addBoundPredicate sig env) sch impl depth pos s)
reconstructTopLevel (Goal funName env (Monotype typ@(FunctionT _ _ _)) impl depth _ synth)
= local (set (_1 . auxDepth) depth) (reconstructFix env funName typ impl depth synth)

reconstructTopLevel g@(Goal funName env (Monotype typ@(AndT l _)) impl depth _ synth) = do
writeLog 1 $ text "reconstructTopLevel"
if isFunctionType l

-- Must add the whole intersection to the environment, but with termination refinements
then local (set (_1 . auxDepth) depth) (reconstructFix env funName typ impl depth synth)

synthesized
code

specification

stutter [] => []
[1] => [1,1]

[2,1] => [2,2,1,1]

examples middle
ground

?
my work

Eas
e of

Use

Pre
cisi

on

Styles of Specification

stutter :: xs: List a → {List a | len ν == 2 * len xs}

refinements

Named
argument

Base
Type Refinement

Refinement Type Postcondition

