UC San Diego Synthesis from Partial Refinements

— Michael James (m3james@ucsd.edu) Advisor: Nadia Polikarpova

what is synthesis?

specification I%"QI% ram synthesized
ulidaing code
° blocks i

O I [[- rcconstructTopLevel
L oD _ reconstructFix
R writelog 1 $ text "reconstructToplLevel’
Os*
0>
60& RC
> e
$ s QS
Styles of Specification
examples middle refinements
ground _— | —
stutter [] => [] stutter :: xs: List a - {List a | len v == 2 x len xs}
[1] => [1,1] Base ”
[2,1] => [2,2,1,1] ype Refinement
re e - Named _ o
mywork argument Refinement Type Postcondition

what is the problem?
filter :: (a - Bool) - [a] - [a]

examples refinements
filter isEven [] => [] filter isOdd [] => [] filter :: pred: (x:a -~ {Bool|pred x}) -
[1] => [] [1] => [1] xs: [a] » {[a | pred v]} xs: [a|pred v] - {[a]l | v == xsl}
[2,1] => [2] [2,1] => [1]
[3,2,1] => [2] [3,2,1] => [3,1] filter pred xs = Nil filter pred xs = xs
[4,3,2,1] => [4,2] [4,3,2,1] => [3,1]
Verbose! Not expressive enough!
partial refinements
filter :: pred:(x:a - {Bool|pred x}) -
[x:{a|-pred v},
. — XS. I V] - - ==
(xs: [a] - {[a]pred vI}) N (xs: la|pred v] N y:{a| pred v}] = tlallv==y}

{[a] |[v==xs})

Predicate positive values '
P Trace-complete example Polymorphic Example
how, efficiently? filter pred xs =
match xs of
1 - . 2 Nil - Nil
Worlds Round trip type checking Cons y ys - if (pred y)
Split worlds per intersection Searching for an app then (Cons y (filter pred ys))
| F—2222 1t+ 1 else (filter pred ys)
filter pred xs = A
match xs of u
Nil - 77 . -
Cons y ys -» (27)::11NnT>2 \y What S next?
v
- Type Negation

// x Mixed Abstract / Concrete
filter ::

Attempt Terms for 11 Terms for 11 filter pred pred: (x:a - {Bool | pred x}) -
1. var ?? = var 77 [a] pred vl - {[al|v == xs} N Condition Abduction
2. match 22 =27 27 ~lal pred vl ~ laf pred v from intersections
Only 2 partial specs!
Rule selected must match per ste Gather subtype constraints Synthesize outside of
PErStep as Horn Clauses trace-complete examples

[1}]. Frankle, P.-M. Osera, D. Walker, and S. Zdancewic, “Example-directed Synthesis: A Type-theoretic Interpretation,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
New York, NY, USA, 2016, pp. 802-815, doi: 10.1145/2837614.2837629.

[2]} N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program Synthesis from Polymorphic Refinement Types,” p. 17.

[31P.-M. Osera and S. Zdancewic, “Type-and-example-c%reCted Program Synthesis,” in Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, New York, NY, USA, 2015, pp. 619—630,
doi: 10.1145/2737924.2738007.

Printed for POPL2020, Student Research Competition, in New Orleans, LA

